The potential difference between two points is found by calculating the change in potential energy of a charge moved between those points, divided by the magnitude of the charge.
Here's a breakdown of the process:
Understanding Potential Difference
Potential difference, often called voltage, is the amount of work required to move a unit electric charge from one point to another in an electric field. It's a scalar quantity measured in volts (V). It's crucial to understand that we are concerned with the difference in electrical potential, not the absolute potential at a single point.
The Formula
The defining equation for potential difference (ΔV) between points A and B is:
ΔV = VB – VA = ΔPE / q
Where:
- ΔV is the potential difference (in volts)
- VB is the electric potential at point B
- VA is the electric potential at point A
- ΔPE is the change in potential energy (in joules) of the charge as it moves from A to B
- q is the magnitude of the test charge (in coulombs)
Steps to Calculate Potential Difference:
- Identify the two points (A and B) between which you want to find the potential difference.
- Determine the charge (q) being moved between these points. This could be a test charge you are introducing, or an intrinsic charge within a system.
- Calculate the change in potential energy (ΔPE) of the charge as it moves from point A to point B. This step often involves knowing the electric field or forces acting on the charge. The work done by the electric field in moving the charge from A to B is equal to the negative change in potential energy (W = -ΔPE).
- Apply the formula: ΔV = ΔPE / q. Divide the change in potential energy by the magnitude of the charge to find the potential difference.
- Determine the sign: The sign of the potential difference is important. A positive ΔV means that the potential at point B is higher than the potential at point A. A negative ΔV means the potential at point B is lower than the potential at point A.
Methods for Determining Change in Potential Energy (ΔPE)
Depending on the scenario, you can determine ΔPE using different methods:
- Constant Electric Field: If the electric field (E) is constant, the change in potential energy is given by: ΔPE = -q E d cos(θ), where d is the distance between the points and θ is the angle between the electric field and the displacement vector. In this case, ΔV = -E d * cos(θ)
- Point Charge(s): If you have a point charge (Q) creating the electric field, the potential at a distance r from the charge is V = kQ/r (where k is Coulomb's constant, approximately 8.99 x 10^9 N⋅m²/C²). Therefore, ΔV = VB - VA = kQ(1/rB - 1/rA), where rA and rB are the distances from charge Q to points A and B, respectively.
- Integration (General Case): In general, if you know the electric field as a function of position, you can find the potential difference by integrating the electric field along a path from A to B: ΔV = - ∫A to B E · dl (where dl is an infinitesimal displacement vector along the path).
Example
Imagine moving a +2 C charge from point A to point B. The electric field does 10 J of work on the charge. What is the potential difference between A and B?
- W = 10 J
- q = +2 C
- ΔPE = -W = -10 J
- ΔV = ΔPE / q = -10 J / 2 C = -5 V
Therefore, the potential difference between A and B is -5 V, meaning the potential at B is 5 V lower than the potential at A.
Key Considerations
- Path Independence: The potential difference between two points is independent of the path taken between them. This is because the electric force is a conservative force.
- Reference Point: The absolute potential at a single point is often defined relative to a reference point (usually "ground" or infinity) where the potential is defined as zero. However, potential differences are always well-defined regardless of the chosen reference point.
Finding the potential difference is a fundamental concept in electromagnetism and is crucial for understanding circuits and the behavior of charged particles in electric fields. By carefully considering the charge, the electric field, and the change in potential energy, you can accurately calculate the potential difference between any two points.