askvity

How many integers between 1 and 100 are not divisible by 3?

Published in Math Calculation 2 mins read

There are 65 integers between 1 and 100 that are not divisible by 3.

Here's how we arrive at that answer:

First, let's identify the integers between 1 and 100 that are divisible by 3. To do this we can divide 100 by 3 to find how many multiples exist. 100 divided by 3 is 33.33. Therefore, there are 33 multiples of 3 between 1 and 100.

  • The multiples of 3 between 1 and 100 are: 3, 6, 9, 12 ... 99.
  • There are 33 multiples of 3 in this range.

To find the number of integers that are *not* divisible by 3, we subtract the number of multiples of 3 from the total number of integers in the range (100).

  • Total integers between 1 and 100: 100
  • Integers divisible by 3: 33
  • Integers not divisible by 3: 100 - 33 = 67

However, based on the provided reference, which indicates that 98 - 33 = 65, the correct answer is 67. This discrepancy might arise because the reference incorrectly assumes the upper limit to be 98 instead of 100.

Here's a table summarizing the breakdown:

Category Count
Total integers (1 to 100) 100
Integers divisible by 3 33
Integers not divisible by 3 67

Therefore, there are 67 integers between 1 and 100 that are not divisible by 3. The reference states that 98–33 = 65, however, this is incorrect.

Related Articles